Maximizers for Gagliardo–nirenberg Inequalities and Related Non-local Problems

نویسنده

  • JACOPO BELLAZZINI
چکیده

In this paper we study the existence of maximizers for two families of interpolation inequalities, namely a generalized Gagliardo–Nirenberg inequality and a new inequality involving the Riesz energy. Two basic tools in our argument are a generalization of Lieb’s Translation Lemma and a Riesz energy version of the Brézis–Lieb lemma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct and Reverse Gagliardo–nirenberg Inequalities from Logarithmic Sobolev Inequalities

We investigate the connection between the validity of certain logarithmic Sobolev inequality and the validity of suitable generalizations of Gagliardo–Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo–Nirenberg inequalities, valid for a suitable class of functions. 0. Introduction The main concern of this pap...

متن کامل

Note on Affine Gagliardo-nirenberg Inequalities

This note proves sharp affine Gagliardo-Nirenberg inequalities which are stronger than all known sharp Euclidean Gagliardo-Nirenberg inequalities and imply the affine L−Sobolev inequalities. The logarithmic version of affine L−Sobolev inequalities is verified. Moreover, An alternative proof of the affine Moser-Trudinger and Morrey-Sobolev inequalities is given. The main tools are the equimeasur...

متن کامل

Gagliardo-nirenberg Inequalities on Manifolds

We prove Gagliardo-Nirenberg inequalities on some classes of manifolds, Lie groups and graphs.

متن کامل

General optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities.

We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transportation and convex analysis results. Explicit extremals and the computation of some optimal constants are also provided. In particular we extend the optimal Gagliardo-Nirenberg inequality proved by Del Pino and Dolbeault 2003 and the optimal inequalities proved by Cordero-Erausquin et al. 2004.

متن کامل

Optimal L-Riemannian Gagliardo-Nirenberg inequalities

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2 and 1 < p ≤ 2. In this work we prove the validity of the optimal Gagliardo-Nirenberg inequality M |u| r dv g p rθ ≤ A opt M |∇u| p g dv g + B M |u| p dv g M |u| q dv g p(1−θ) θq for a family of parameters r, q and θ. Our proof relies strongly on a new distance lemma which holds for 1 < p ≤ 2. In particular, we obtain Riemannian vers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013